The data specified above serve to describe the product. Should information be provided on use, these are only examples of applications and suggestions. Information from the catalog are not assured properties. The information given does not release the user from the obligation of own judgment and verification. Our products are subject to a natural wear and aging process.

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The cover shows an example application. The product delivered may differ from the image on the cover.

The original instruction manual was created in the German language.
Content

1. **About this manual** ... 5
 1.1 Validity of the documentation ... 5
 1.2 Required and supplementary documentation 5
 1.3 Display of information .. 6
 1.3.1 Safety instructions ... 6
 1.3.2 Symbols .. 7
 1.3.3 Designations ... 7
 1.3.4 Abbreviations ... 7

2. **Safety instructions** ... 8
 2.1 About this chapter .. 8
 2.2 Intended use ... 8
 2.3 Improper use ... 8
 2.4 Personnel qualifications .. 9
 2.5 General safety instructions .. 9
 2.6 Product-specific safety instructions 10
 2.7 Personal protective equipment 11

3. **General instructions on damage to equipment and the product** .. 12

4. **Delivery contents** ... 14

5. **Product description** .. 15
 5.1 Performance description .. 15
 5.2 Product description .. 15
 5.2.1 Assembly of the axial piston unit 15
 5.2.2 Functional description ... 16
 5.3 Product identification ... 16

6. **Transport and storage** .. 17
 6.1 Transporting the axial piston unit 17
 6.1.1 Transporting by hand .. 17
 6.1.2 Transporting with lifting device 17
 6.2 Storing the axial piston unit .. 19

7. **Installation** ... 21
 7.1 Unpacking ... 21
 7.2 Installation conditions .. 21
 7.3 Installation position ... 23
 7.3.1 Below-reservoir installation (standard) 23
 7.3.2 Above-reservoir installation 24
 7.4 Installing the axial piston unit .. 25
 7.4.1 Preparation .. 25
 7.4.2 Dimensions ... 25
 7.4.3 General instructions .. 25
 7.4.4 Installation with coupling ... 26
 7.4.5 Installation on a gearbox ... 27
 7.4.6 Installation with cardan shaft 27
 7.4.7 Completing installation ... 28
 7.4.8 Hydraulically connecting the axial piston unit 28
 7.5 Performing flushing cycle .. 34

8. **Commissioning** ... 35
 8.1 First commissioning .. 35
 8.1.1 Filling the axial piston unit .. 35
 8.1.2 Testing the hydraulic fluid supply 36
 8.1.3 Performing functional test .. 37
 8.2 Running-in phase .. 37
 8.3 Recommissioning after standstill 38

9. **Operation** .. 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Maintenance and repair</td>
<td>40</td>
</tr>
<tr>
<td>10.1</td>
<td>Cleaning and care</td>
<td>40</td>
</tr>
<tr>
<td>10.2</td>
<td>Inspection</td>
<td>41</td>
</tr>
<tr>
<td>10.3</td>
<td>Maintenance</td>
<td>41</td>
</tr>
<tr>
<td>10.4</td>
<td>Repair</td>
<td>41</td>
</tr>
<tr>
<td>10.5</td>
<td>Spare parts</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>Removal and replacement</td>
<td>43</td>
</tr>
<tr>
<td>11.1</td>
<td>Required tools</td>
<td>43</td>
</tr>
<tr>
<td>11.2</td>
<td>Preparing for removal</td>
<td>43</td>
</tr>
<tr>
<td>11.3</td>
<td>Removing the axial piston unit</td>
<td>43</td>
</tr>
<tr>
<td>11.4</td>
<td>Preparing the components for storage or further use</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>Disposal</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>Extension and conversion</td>
<td>44</td>
</tr>
<tr>
<td>14</td>
<td>Troubleshooting</td>
<td>45</td>
</tr>
<tr>
<td>14.1</td>
<td>How to proceed for troubleshooting</td>
<td>45</td>
</tr>
<tr>
<td>14.2</td>
<td>Malfunction table</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>Technical data</td>
<td>47</td>
</tr>
<tr>
<td>16</td>
<td>Appendix</td>
<td>47</td>
</tr>
<tr>
<td>16.1</td>
<td>Address directory</td>
<td>47</td>
</tr>
<tr>
<td>17</td>
<td>Alphabetical index</td>
<td>48</td>
</tr>
</tbody>
</table>
1 About this manual

1.1 Validity of the documentation

This documentation is valid for the following product:
- Axial piston fixed motor A2FM Series 6

This documentation is intended for machine/system manufacturers, fitters and service technicians.

This documentation contains important information on the safe and appropriate installation, transport, commissioning, operation, maintenance, removal and simple troubleshooting of the axial piston unit.

- Read this documentation completely and in particular chapter 2 “Safety instructions” and chapter 3 “General instructions on damage to equipment and the product”, before working with the axial piston unit.

1.2 Required and supplementary documentation

- Only commission the axial piston unit if the documentation marked with the book symbol is available to you and you have understood and observed it.

Table 1: Required and supplementary documentation

<table>
<thead>
<tr>
<th>Title</th>
<th>Document number</th>
<th>Document type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order confirmation</td>
<td></td>
<td>Order confirmation</td>
</tr>
<tr>
<td>Contains the order-related technical data of your axial piston fixed motor A2FM.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation drawing</td>
<td></td>
<td>Installation drawing</td>
</tr>
<tr>
<td>Contains the outer dimensions, all connections and the hydraulic circuit diagram for your axial piston fixed motor A2FM.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial piston fixed motor A2FM</td>
<td>RE 91001</td>
<td>Data sheet</td>
</tr>
<tr>
<td>Contains the permissible technical data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure and boost valves for mobile applications, model MHDB</td>
<td>RE 64642</td>
<td>Data sheet</td>
</tr>
<tr>
<td>BVD counterbalance valve</td>
<td>RE 95522</td>
<td>Data sheet</td>
</tr>
<tr>
<td>Speed sensor (DSA)</td>
<td>RE 95133</td>
<td>Data sheet</td>
</tr>
<tr>
<td>Mineral-oil based hydraulic fluid and related hydrocarbons</td>
<td>RE 90220</td>
<td>Data sheet</td>
</tr>
<tr>
<td>Describes the requirements on a mineral-oil based hydraulic fluid and related hydrocarbons for the operation with Rexroth hydraulic components, and assists you in selecting a hydraulic fluid for your hydraulic system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmentally acceptable hydraulic fluids</td>
<td>RE 90221</td>
<td>Data sheet</td>
</tr>
<tr>
<td>Describes the requirements on an environmentally acceptable hydraulic fluid for operation with Rexroth hydraulic components and assists you in selecting a hydraulic fluid for your hydraulic system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial piston units for operation with HF hydraulic fluids</td>
<td>RE 90223</td>
<td>Data sheet</td>
</tr>
<tr>
<td>Contains additional information on the use of Rexroth axial piston units with HF hydraulic fluids.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information of the use of hydrostatic drives at low temperatures</td>
<td>RE 90300-03-B</td>
<td>Manual</td>
</tr>
<tr>
<td>Contains additional information on the use of Rexroth axial piston units at low temperatures.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage and preservation of axial piston units</td>
<td>RE 90312</td>
<td>Data sheet</td>
</tr>
<tr>
<td>Contains additional information on storage and preservation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.3 Display of information

Standardized safety instructions, symbols, terms and abbreviations are used so that you can use this documentation to work quickly and safely with your axial piston unit. To give you a better understanding they are explained in the sections below.

1.3.1 Safety instructions

Safety instructions are contained in this documentation in chapter 2.6 “Product-specific safety instructions” and chapter 3 “General instructions on damage to equipment and the product” as well as before a sequence or instruction whenever there is a risk of injury to persons or damage to equipment. The described danger prevention measures must be observed.

Safety instructions are set out as follows:

<table>
<thead>
<tr>
<th>SIGNAL WORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type and source of danger</td>
</tr>
<tr>
<td>Consequences with noncompliance</td>
</tr>
<tr>
<td>• Measure for danger prevention</td>
</tr>
<tr>
<td>• [List]</td>
</tr>
</tbody>
</table>

• Safety sign: draws attention to the danger
• Signal word: identifies the degree of the danger
• Type and source of danger: identifies the type and source of the danger
• Consequences: describes what occurs if the safety instructions are not complied with
• Precautions: states how the danger can be avoided

Table 2: Danger classes in accordance with ANSI Z535.6-2006

<table>
<thead>
<tr>
<th>Safety sign, signal word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>☢️ DANGER</td>
<td>Identifies a dangerous situation that will result in death or serious injuries if it is not avoided.</td>
</tr>
<tr>
<td>☢️ WARNING</td>
<td>Identifies a dangerous situation that may result in death or serious injuries if it is not avoided.</td>
</tr>
<tr>
<td>☢️ CAUTION</td>
<td>Identifies a dangerous situation that may result in minor to moderate injuries if it is not avoided.</td>
</tr>
<tr>
<td>NOTE</td>
<td>Damage to equipment; the product or the environment may be damaged.</td>
</tr>
</tbody>
</table>
1.3.2 Symbols

The following symbols mark notes that are not safety-relevant but which increase the understanding of the documentation.

Table 3: Meaning of the symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Info Icon]</td>
<td>If this information is disregarded, the product can not be used and/or operated to the optimum extent.</td>
</tr>
<tr>
<td>![Rearrangement Icon]</td>
<td>Single, independent step</td>
</tr>
<tr>
<td>1.</td>
<td>Numbered instruction: The numbers specify that the steps are completed one after the other.</td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>

1.3.3 Designations

This documentation uses the following designations:

Table 4: Designations

<table>
<thead>
<tr>
<th>Designation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2FM</td>
<td>Axial piston fixed motor, open and closed circuits</td>
</tr>
<tr>
<td>Screw plug</td>
<td>Metal screw, pressure-resistant</td>
</tr>
<tr>
<td>Protective plug</td>
<td>Made out of plastic, not pressure-resistant, only for transportation</td>
</tr>
</tbody>
</table>

As umbrella term for “Axial piston fixed motor A2FM”, the designation “axial piston unit” will be used in the following.

1.3.4 Abbreviations

This documentation uses the following abbreviations:

Table 5: Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN</td>
<td>Deutsche Industrie Norm (German Institute for Standardization)</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>RE</td>
<td>Rexroth document in the English language</td>
</tr>
<tr>
<td>VDI 2230</td>
<td>Directive for the systematic calculation of high duty bolted joints and joints with one cylindrical bolt from the VDI (Verein Deutscher Ingenieure – Association of German Engineers)</td>
</tr>
</tbody>
</table>
2 Safety instructions

2.1 About this chapter
The axial piston unit has been manufactured according to the generally accepted rules of current technology. There is, however, still a danger of personal injury or damage to equipment if this chapter and the safety instructions in this documentation are not complied with.

- Read this documentation completely and thoroughly before working with the axial piston unit.
- Keep this documentation in a location where it is accessible to all users at all times.
- Always include the required documentation when you pass the axial piston unit on to third parties.

2.2 Intended use
Axial piston units are hydraulic components, meaning that in their application they are classified neither as complete nor as incomplete machines in the sense of the EU machine directive 2006/42/EC. A component is exclusively intended to form an incomplete or a complete machine together with other components. The component may only be commissioned after it has been installed in the machine/system for which it is intended and the safety of the entire system has been established in accordance with the machine directive.

The product is intended for the following use:
The axial piston unit is only approved for use as a hydraulic motor in hydrostatic drives.

- Observe the technical data, application and operating conditions and performance limits as specified in data sheet RE 91001 and in the order confirmation. Information about approved hydraulic fluids can be found in data sheet RE 91001.

The axial piston unit is only intended for professional use and not for private use. Intended use includes having completely read and understood this documentation, especially chapter 2 “Safety instructions”.

2.3 Improper use
Any use other than that described as intended use shall be considered as improper and is therefore impermissible.

Bosch Rexroth AG shall accept no liability whatsoever for damage resulting from improper use. The user shall bear all risks arising from improper use.

Similarly, the following foreseeable fault usages are also considered to be not as intended:

- Using outside the operating parameters approved in the data sheet (unless customer-specific approval has been granted)
- Use for non-approved fluids, e.g. water or polyurethane components
- Modification of factory settings by non-authorized persons
- Use of add/on parts (e.g. mountable filter, control unit, valves) that are not specified Rexroth components
- Using the axial piston unit under water at a depth of more than 10 meters without necessary additional measures, e.g. pressure equalization
• Using the axial piston unit when the exterior pressure is greater than the interior pressure (case pressure)
• Using the axial piston unit in explosive environments unless the component or machine/system has been certified as compliant with the ATEX directive 94/9/EC
• Using the axial piston unit in an aggressive atmosphere
• Using the axial piston unit in aircraft or space craft

2.4 Personnel qualifications

The activities described in this documentation require basic mechanical, electrical and hydraulic knowledge, as well as knowledge of the associated technical terms. For transporting and handling the product, additional knowledge is necessary with regard to working with a lifting device and the corresponding attachment equipment. In order to ensure safe use, these activities may therefore only be carried out by appropriate qualified personnel or an instructed person under the direction and supervision of qualified personnel.

Qualified personnel are those who can recognize possible hazards and institute the appropriate safety measures due to their professional training, knowledge, and experience, as well as their understanding of the relevant regulations pertaining to the work to be done. Qualified personnel must observe the rules relevant to the subject area and have the necessary hydraulic knowledge.

Hydraulic knowledge means, for instance:
• reading and fully understanding hydraulic plans,
• fully understanding in particular the interrelationships regarding safety devices, and
• having knowledge on the function and assembly of hydraulic components.

Bosch Rexroth offers training support for special fields. You can find an overview of the training contents on the Internet at: http://www.boschrexroth.de/didactic.

2.5 General safety instructions

• Observe the applicable accident prevention and environmental protection regulations.
• Observe the safety regulations and provisions of the country in which the product is used/operated.
• Use Rexroth products only when they are in good technical order and condition.
• Observe all notes on the product.
• Persons who install, operate, remove or maintain Rexroth products must not consume any alcohol, drugs or pharmaceuticals that may affect their ability to respond.
• Only use Rexroth original accessories and spare parts to ensure there is no risk to persons from unsuitable spare parts.
• Conform to the technical data and ambient conditions specified in the product documentation.
• If unsuitable products are installed or used in applications that are of relevance to safety, unexpected operating conditions may occur in the application which could result in injury to persons or property damage. For this reason, only use the product in a safety-relevant application if this use is expressly specified and permitted in the product documentation, for example in ex-protection applications or in safety-related parts of a control system (functional safety).
2.6 Product-specific safety instructions

The following safety instructions apply for chapters 6 to 14.

WARNING

Danger from suspended loads!

Danger to life or risk of injury, damage to equipment!

Improper transportation may cause the axial piston unit to fall down lead to injuries e.g. crushing or broken bones or damage to the product.

- Make certain that the forklift truck or lifting device has adequate lifting capacity.
- Never stand under or put your hands under suspended loads.
- Ensure your position is stable during transportation.
- Use your personal protective equipment (e.g. safety glasses, safety gloves, suitable working clothes, safety shoes).
- Use suitable lifting devices for transportation.
- Observe the prescribed position of the lifting strap.
- Observe the national laws and regulations on work and health protection and transportation.

Pressurized machine/system!

Danger to life or risk of injury, serious injuries when working on machines/systems not shutdown! Damage to equipment!

- Protect the complete system against being energized.
- Make sure that the machine/system is depressurized. Please follow the machine/system manufacturer’s instructions.
- Do not disconnect any line connections, connections and components when the machine/system is pressurized.
- Switch off all power-transmitting components and connections (electric, pneumatic, hydraulic) in accordance with the manufacturer’s instruction and secure them against being switched back on.

Escaping oil mist!

Danger of explosion, danger of fire, allergic reactions, environmental pollution!

- Depressurize the machine/system and repair the leak.
- Only perform welding work then the machine/system is depressurized.
- Keep open flames and ignition sources away from the axial piston unit.
- If axial piston units are to be situated in the vicinity of ignition sources or powerful thermal radiators, a shield must be erected to ensure that any escaped hydraulic fluid can not ignite, and to protect hose lines from premature aging.

Electrical voltage!

Risk of injury due to electric shock or damage to equipment!

- Always set up the relevant part of the machine/system so that it is free of electrical voltage before you install the product or when connecting and disconnecting plugs. Protect the machine/system against being energized.
CAUTION

High noise development in operation!
Danger of hearing damage, deafness!
The noise emission of axial piston units depends on speed, operating pressure and installation conditions. The sound pressure level may rise above 70 dBA during normal application conditions.
▶ Always wear hearing protection when in the vicinity of the operating axial piston unit.

Hot surfaces on the axial piston unit!
Risk of burns!
▶ Allow the axial piston unit to cool down sufficiently before touching it.
▶ Wear heat-resistant protective clothing, e.g. gloves.

Improper routing of cables and lines!
Tripping hazard and damage to equipment!
▶ Lay cables and lines so that they can not be damaged and nobody can trip over them.

Contact with hydraulic fluid!
Hazard to health/health impairment e.g. eye injuries, skin damage, toxication during inhalation!
▶ Avoid contact with hydraulic fluids.
▶ When working with hydraulic fluids, strictly observe the safety instructions provided by the lubricant manufacturer.
▶ Use your personal protective equipment (e.g. safety glasses, safety gloves, suitable working clothes, safety shoes).
▶ If hydraulic fluid should, nevertheless, come into contact with your eyes or bloodstream or is swallowed, consult a doctor immediately.

Escaping hydraulic fluid due to machine/system leakage!
Risk of burns and risk of injury due to escaping oil jet!
▶ Depressurize the machine/system and repair the leak.
▶ Never attempt to block or seal the leak or oil jet with a cloth.

2.7 Personal protective equipment
The personal protective equipment is the responsibility of the user of the axial piston unit. Observe the safety regulations and provisions of your country.
All components of the personal protective equipment must be intact.
3 General instructions on damage to equipment and the product

The following notes apply for chapters 6 to 14.

NOTE

Danger from improper handling!

Product can be damaged!

- Do not expose the product to an impermissible mechanical load.
- Never use the product as a handle or step.
- Do not place/lay any objects on the product.
- Do not strike the drive shaft of the axial piston unit.
- Do not set/place the axial piston unit on the drive shaft.
- Do not strike sensitive fittings (e.g. sensors or valves).
- Do not strike sealing surfaces (e.g. service line ports).
- Leave the protective covers on the axial piston unit until shortly before the lines are connected.

Damage to equipment due to improper lubrication!

Product can be damaged or destroyed!

- Never operate the axial piston unit with insufficient hydraulic fluid. Make sure in particular that the rotary group has sufficient lubrication.
- When commissioning a machine/system, make sure that the case interior and the service lines of the axial piston unit are filled with hydraulic fluid and remain filled during operation. Air intrusions in the forward drive shaft bearing are to be prevented, especially with the installation position “drive shaft upwards”.
- Check the hydraulic fluid level in the case interior regularly; if necessary, recommission. With above-reservoir installation, the case interior may drain via the reservoir line after longer standstill periods (air enters via the shaft seal) or via the service line (gap leakage). The bearings are thus insufficiently lubricated at switch on.

Mixing of hydraulic fluids!

Product can be damaged!

- Before installation, remove all fluids from the axial piston unit to prevent mixing with the hydraulic fluid used in the machine/system.
- Any mixing of hydraulic fluids of different manufacturers or different types of the same manufacturer is not permissible in general.
Contamination of the hydraulic fluid!
The cleanliness of the hydraulic fluid has a considerable impact on the cleanliness and service life of the hydraulic system. Premature wear and malfunctions!

- Make sure that the working environment at the installation site is fully free of dust and foreign substances in order to prevent contaminants, such as welding beads or metal cuttings, from getting into the hydraulic lines and causing product wear or malfunctions. The axial piston unit must be installed in a clean condition.
- Use only clean connections, hydraulic lines and attachments (e.g. measuring equipment).
- No contaminants may enter the connections when they are plugged.
- Before commissioning, make certain that all hydraulic connections are tight and that all of the connection seals and plugs are installed correctly to ensure that they are leakproof and fluids and contaminants are prevented from penetrating the product.
- Use a suitable filter system to filter hydraulic fluids during filling to minimize solid impurities and water in the hydraulic system.

Improper cleaning!
Product can be damaged!

- Plug all openings with the appropriate protective equipment in order to prevent detergents from entering the hydraulic system.
- Never use solvents or aggressive detergents. Use only water and, if necessary, a mild detergent to clean the axial piston unit.
- Do not point the power washer at sensitive components, e.g. shaft seal, electrical connections and components.
- Use lint-free cloths for cleaning.

Environmental pollution due to incorrect disposal!
Careless disposal of the axial piston unit, the hydraulic fluid and the packaging material could lead to pollution of the environment!

- Dispose of the axial piston unit, hydraulic fluid and packaging in accordance with the national regulations in your country.
- Dispose of the hydraulic fluid in accordance with the applicable safety data sheet for the hydraulic fluid.

Escaping or spilling hydraulic fluid!
Environmental pollution and contamination of the ground water!

- When filling and draining the hydraulic fluid, always place a drip tray under the axial piston unit.
- Use an oil binding agent if hydraulic fluid is spilt.
- Observe the information in the safety data sheet for the hydraulic fluid and the specifications provided by the system manufacturer.

• The warranty only applies to the delivered configuration.
• The entitlement under warranty is rendered void if the product is incorrectly installed, commissioned or operated, as well as in the case of improper use and/or handling.
4 Delivery contents

Fig. 1: Axial piston unit with service line ports at the side (left figure) and rear (right figure)

Included in the delivery contents are:

- Axial piston unit as per order confirmation

The following parts are also installed on delivery:

- Protective covers made of plastic (1) (metal protective covers are used for painted axial piston units)
- Protective plug/threaded plug (2)
5 Product description

5.1 Performance description
An axial piston fixed motor converts hydrostatic flow into mechanical rotation. It is designed for mobile and stationary applications. Refer to data sheet RE 91001 and the order confirmation for the technical data, operating conditions and operating limits of the axial piston unit.

5.2 Product description
The A2FM is a fixed motor with axial tapered piston rotary group of bent-axis design for hydrostatic drives in open and closed circuits. For axial piston units with bent-axis design, the pistons are arranged diagonally with respect to the drive shaft. The pistons rest directly on the drive shaft where they generate a pressure-dependent torque.

Open circuit
In the open circuit, the hydraulic fluid flows from the reservoir to the hydraulic pump from where it is transported via a directional valve to the hydraulic motor. From the hydraulic motor, the hydraulic fluid flows back to the reservoir via the directional valve. The output direction of rotation of the hydraulic motor can be changed by the directional valve.

Closed circuit
In the closed circuit, the hydraulic fluid returning from the hydraulic motor flows directly to the hydraulic pump. The output direction of rotation of the hydraulic motor is changed by reversing the flow direction in the hydraulic pump.

5.2.1 Assembly of the axial piston unit

![Assembly of the A2FM](image)

Fig. 2: Assembly of the A2FM

1. Drive shaft
2. Piston
3. Cylinder
4. Control plate
5. Port plate
5.2.2 Functional description

Motor function
A hydraulic motor converts hydrostatic energy into mechanical energy. Hydraulic fluid is directed via the port plate (5) and the control plate (4) to the cylinder bores. The pistons (2) in the cylinder bores execute a stroke which is converted into rotation by the piston at the drive shaft flange. During this process, the pistons move the cylinder (3) and generate an output torque at the drive shaft. The output torque increases with the pressure difference between the high- and low-pressure sides. The output speed is proportional to the inward flow and inversely proportional to the displacement of the hydraulic motor.

5.3 Product identification

The axial piston unit can be identified from the name plate. The following example shows an A2FM name plate:

![A2FM name plate](image)

1	Manufacturer
2	Sample category (optional)
3	Internal plant designation
4	Specified area for test stamp
5	Direction of rotation (viewed on drive shaft) – here: bi-directional
6	Ground (optional)
7	Bar code
8	Production date
9	Serial number
10	Material number of the axial piston unit
11	Ordering code
12	Customer material number
Transport and storage

Make sure you conform to the required ambient conditions during transportation and storage, see chapter 6.2 “Storing the axial piston unit”.

You can find unpacking notes in chapter 7.1 “Unpacking”.

6.1 Transporting the axial piston unit

The transportation options below exist depending on the weight and duration of the transport:

- Transporting by hand
- Transporting with lifting device (ring screw or lifting strap)

<table>
<thead>
<tr>
<th>Dimensions and weights</th>
<th>Table 6: Dimensions and weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>5</td>
</tr>
<tr>
<td>Ground kg</td>
<td>2.5</td>
</tr>
<tr>
<td>Width mm</td>
<td></td>
</tr>
<tr>
<td>Height mm</td>
<td></td>
</tr>
<tr>
<td>Depth mm</td>
<td></td>
</tr>
</tbody>
</table>

The dimensions vary with the unit type. The values applicable for your axial piston unit can be found in the installation drawing (request if necessary).

Size	90	107	125	160	180	200	250	355	500	710	1000
Ground kg	23	32	32	45	45	66	73	110	155	325	336
Width mm											
Height mm											
Depth mm											

The dimensions vary with the unit type. The values applicable for your axial piston unit can be found in the installation drawing (request if necessary).

The weight specifications may vary depending on the unit type.

6.1.1 Transporting by hand

Axial piston units with a weight of up to 15 kg can be transported manually for a short time if necessary.

CAUTION! Danger from heavy loads!
There is a danger of health damage when carrying axial piston units.
- Use suitable lifting, placement and relocation equipment.
- Use your personal protective equipment (e.g. safety glasses, safety gloves, suitable working clothes, safety shoes).
- Do not transport the axial piston unit at sensitive attachment parts (e.g. sensors or valves).
- Carefully place the axial piston unit on the seating to prevent it from being damaged.

6.1.2 Transporting with lifting device

For transporting, the axial piston unit can be connected to a lifting device via a ring screw or a lifting strap.

Transport with ring screw
The axial piston unit can be transported suspended from a ring screw screwed into the drive shaft as long as only outward (pulling) axial forces are applied.
Transport and storage

- For all female threads, use a threaded plug from the same system of units and of the correct size.
- To do this, screw a ring screw completely into the thread on the drive shaft. The thread sizes is stated in the installation drawing.
- Make sure that the ring screw can bear the total weight of the axial piston unit plus 20%.

You can hoist the axial piston unit as shown in Fig. 4 with the ring screw screwed into the drive shaft.

![Fig. 4: Fixing the ring screw](image)

Transport with lifting strap

WARNING! Danger from suspended loads!

During transport with a lifting device, the axial piston unit can fall out of the lifting strap and cause injuries.

- Use the widest possible lifting strap.
- Make sure that the axial piston unit is securely fixated with the lifting strap.
- Only guide the axial piston unit by hand for fine positioning and to avoid oscillations.
- Never stand under or put your hands under suspended loads.

- Place the lifting strap around the axial piston unit in such a way that it passes over neither the attachment parts (e.g. valves) nor such that the axial piston unit is hung from attachment parts (see Fig. 5).

![Fig. 5: Transport with lifting strap](image)
6.2 Storing the axial piston unit

Requirement
- The storage areas must be free from corrosive materials and gases.
- To prevent damage to the seals, ozone-forming equipment (e.g. mercury-vapor lamps, high voltage equipment, electric motors, sources of electrical sparks or electrical discharges) must not be operated in storage areas.
- The storage areas must be dry.
- Ideal storage temperature: +5 °C to +20 °C.
- Minimum storage temperature: -50 °C.
- Maximum storage temperature: +60 °C.
- Avoid high light irradiation (e.g. bright windows or direct fluorescent lighting).
- Do not stack axial piston units and store them shock-proof.
- Do not store the axial piston unit on sensitive attachment parts, e.g. speed sensors.
- For other storage conditions, see table 7.

- Check the axial piston unit monthly to ensure proper storage.

After delivery
The axial piston units are provided ex-works with corrosion protection packaging (corrosion protection film).

The following table lists the maximum permissible storage times for an originally packed axial piston unit as per data sheet RE 90312.

<table>
<thead>
<tr>
<th>Storage conditions</th>
<th>Standard corrosion protection</th>
<th>Long-term corrosion protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed, dry room, uniform temperature between +5 °C and +20 °C. Undamaged and closed corrosion protection film.</td>
<td>Maximum 12 months</td>
<td>Maximum 24 months</td>
</tr>
</tbody>
</table>

The entitlement under warranty is rendered void if the requirements and storage conditions are not adhered to or after expiration of the maximum storage time (see table 7).

Procedure after expiration of the maximum storage time:
1. Check the entire axial piston unit for damage and corrosion prior to installation.
2. Check the axial piston unit for proper function and leaks during a test run.
3. If the storage time exceeds 24 months, the shaft seal ring must be replaced.

After expiry of the maximum storage time, we recommend that you have the axial piston unit inspected by your responsible Bosch Rexroth Service partner.

In the event of questions regarding repair and spare parts, contact your responsible Bosch Rexroth Service partner or the service department of the manufacturer’s plant for the axial piston unit, see chapter “10.5 Spare parts” for further information.
If a dismounted axial piston unit is to be stored, it must be preserved against corrosion for the duration of the storage.

The following instructions only refer to axial piston units which are operated with a mineral-oil based hydraulic fluid. Other hydraulic fluids require preservation methods that are specifically designed for them. In such a case, consult with Bosch Rexroth Service, see chapter 10.5 “Spare parts” for address.

Bosch Rexroth recommends the following procedure:

1. Clean the axial piston unit, see chapter 10.1 “Cleaning and care”.
2. Empty the axial piston unit.
3. For storage time up to 12 months: Moisten the inside of the axial piston unit with mineral oil and fill with approx. 100 ml mineral oil.
 For storage time up to 24 months: Fill the axial piston unit with corrosion protection medium VCI 329 (20 ml).
 Fill via the reservoir port T_1 or T_2, see chapter 7.4 “Installing the axial piston unit”, Fig. 12 to 15.
4. Seal all ports airproof.
5. Moisten the unpainted surfaces of the axial piston unit with mineral oil or a suitable, easily removed corrosion protection agent, e.g. acid-free grease.
6. Package the axial piston unit airproof together with desiccant in corrosion protection film.
7. Store the axial piston unit so that it is protected against jolts, see “Requirement” in this chapter.
7 Installation

Prior to installation, the following documents must be available:

- Installation drawing for axial piston unit (can be obtained from your responsible contact person at Bosch Rexroth)
- Hydraulic circuit diagram for the axial piston unit (in the installation drawing)
- Hydraulic circuit diagram for the machine/system (available from the machine/system manufacturer)
- Order confirmation (contains the order-related technical data for your axial piston unit)
- Data sheet of the axial piston unit (contains the permissible values of technical data)

7.1 Unpacking

The axial piston unit is delivered in a corrosion protection film made of polyethylene material (PE).

CAUTION! Danger from parts falling out!

If the packaging is not opened correctly, parts may fall out and damage the parts or even cause injuries!

- Place the packaging on a flat and solid surface.
- Only open the packaging from the top.
- Remove the packaging from the axial piston unit.
- Check the axial piston unit for transport damage and completeness, see chapter 4 “Delivery contents”.
- Dispose of the packaging according to the environmental regulations of your country.

7.2 Installation conditions

The installation location and position of the axial piston unit essentially determine the procedures during installation and commissioning (such as when filling and air bleeding the axial piston unit).

- Fix the axial piston unit so that the expected forces and torques can be transferred without any danger. The machine/system manufacturer is responsible for dimensioning the fasteners.
- Observe the permissible radial forces on the drive shaft when transferring output drive with radial loading (belt drives). If necessary, the belt pulley must be separately mounted.
- Make certain that the axial piston unit is air bled and filled with hydraulic fluid during commissioning and operation. This is also to be observed following relatively long standstill periods as the axial piston unit may empty via the hydraulic lines.
- The case drain fluid in the case interior must be directed to the tank via the highest case drain port. Use the line size which is appropriate for the port.
- Avoid using a check valve in the reservoir line.
 Exception: above-reservoir installation, shaft upward.
 A check valve in the reservoir line (cracking pressure 0.5 bar) can prevent draining via the reservoir line. Note the correct flow direction.
- To achieve favorable noise values, decouple all connecting lines from all vibration-capable components (e.g. reservoir) using elastic elements.
Installation

- Make sure that the reservoir and return lines lead into the reservoir below the minimum fluid level in all operating conditions. You prevent foam formation by doing this.
- Make sure that the working environment at the installation site is fully free of dust and foreign substances. The axial piston unit must be installed in a clean condition. Dirt contamination in the hydraulic fluid can seriously impair the function and service life of the axial piston unit.
- Use lint-free cloths for cleaning.
- Use suitable mild detergents to remove lubricants and other difficult-to-remove contamination. Cleaning agents must not enter the hydraulic system.
7.3 Installation position

The following installation positions are permissible. The shown piping layout illustrates the basic layout.

With size 10 to 200 and installation position "shaft upward", use motor with air bleed port R (optional). With size 250 to 1000, port U is provided as standard in the area near the bearings for air bleeding.

7.3.1 Below-reservoir installation (standard)

Below-reservoir installation is when the axial piston unit is installed outside of the reservoir below the minimum fluid level.

![Diagram showing below-reservoir installation with installation positions 1–4](image)

Fig. 6: Below-reservoir installation with installation positions 1–4

<table>
<thead>
<tr>
<th>Installation position</th>
<th>Air bleed</th>
<th>Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (drive shaft, horizontal)</td>
<td>–</td>
<td>T1</td>
</tr>
<tr>
<td>2 (drive shaft, horizontal)</td>
<td>–</td>
<td>T2</td>
</tr>
<tr>
<td>3 (drive shaft, vertically downward)</td>
<td>–</td>
<td>T1</td>
</tr>
<tr>
<td>4 (drive shaft vertically upward)</td>
<td>R/U</td>
<td>T2</td>
</tr>
</tbody>
</table>
7.3.2 Above-reservoir installation

Above-reservoir installation is when the axial piston unit is installed above the minimum fluid level of the reservoir.

With installation position 8 (drive shaft upwards), also air bleed via flow port R/U.

Recommendation for installation position 8 (shaft upwards): a check valve in the case drain line (cracking pressure 0.5 bar) can prevent the case interior from draining.

Fig. 7: Above-reservoir installation with installation positions 5–8

Table 9: Above-reservoir installation

<table>
<thead>
<tr>
<th>Installation position</th>
<th>Air bleed</th>
<th>Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (drive shaft, horizontal)</td>
<td>–</td>
<td>T₁ (L₁)</td>
</tr>
<tr>
<td>6 (drive shaft, horizontal)</td>
<td>–</td>
<td>T₁ (L₁)</td>
</tr>
<tr>
<td>7 (drive shaft, vertically downward)</td>
<td>–</td>
<td>T₁ (L₁)</td>
</tr>
<tr>
<td>8 (drive shaft vertically upward)</td>
<td>R/U</td>
<td>T₁ (L₁)</td>
</tr>
</tbody>
</table>
7.4 Installing the axial piston unit

7.4.1 Preparation

1. Compare the material number and designation (ordering code) with the details in the order confirmation.

 If the material number for the axial piston unit does not correspond to the one in the order confirmation, contact Bosch Rexroth Service for clarification, see chapter “10.5 Spare parts” for address.

2. Before installing, completely empty the axial piston unit to prevent mixing with the hydraulic fluid used in the machine/system.

![Fig. 8: Direction of rotation](image)

 W Bi-directional (counter-clockwise and clockwise rotation permissible)
 L Counter-clockwise
 R Clockwise

 The direction of rotation as specified on the name plate, see chapter 5.3 “Identification of the product”, is the direction of rotation of the axial piston unit as viewed to the drive shaft.

7.4.2 Dimensions

The installation drawing contains the dimensions for all connections and ports on the axial piston unit. Also observe the manuals provided by the manufacturers of the other hydraulic components when selecting the required tools.

7.4.3 General instructions

Please keep in mind the following general notes for installation of the axial piston unit:

- Note that you can expect certain installation positions to affect the control device. Because of gravity, dead weight and case pressure, minor characteristic displacements and actuating time changes may occur.
- After a short operating time, toothed belts lose a major portion of their pretension and thus cause speed variations and torsional vibrations. Torsional vibrations may cause leakages on the shaft seal or increased rotary angle accelerations of the rotary group of the axial piston unit.
V-belt drives without automatic clamper are also critical with regard to speed variations and torsional vibrations. These can also lead to leakages on the shaft seal ring. An automatic clamper can lessen the speed variations and vibrations and thus avoid consequential damage.

- When using toothed belts or v-belts to transfer the input or output drive, always use an automatic tensioning device.

On the input or output drive of an axial piston unit, a cardan shaft may cause vibrations and impermissible rotary angle accelerations. Depending on the frequency and temperature, they may result in leakage on the shaft seal and damage to the rotary group.

When multiple units are combined, make sure that the case pressure of each unit is not exceeded. If there are pressure differences at the reservoir ports of the units, the complete reservoir line must be changed so that the lowest permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate reservoir lines must be laid as required.

The installation method for the axial piston unit depends on the connecting elements to the output side. The following descriptions explain the installation of the axial piston unit:

- with a coupling
- on a gearbox

7.4.4 Installation with coupling

The method for installing the axial piston unit with a coupling is described below:

NOTE! Danger from improper handling!

Product can be damaged!

- Do not install the coupling hub onto the drive shaft of the axial piston unit by striking it.

1. Install the specified coupling half onto the drive shaft of the axial piston unit according to the instructions of the coupling manufacturer. The drive shaft of the axial piston unit is equipped with a threaded bore. Use this threaded bore to pull the coupling element onto the drive shaft. The size of the threaded bore can be seen in the installation drawing.

2. Remove dirt and contaminants from the installation location.

3. Clamp the coupling hub onto the drive shaft or ensure permanent lubrication of the drive shaft. This prevents the formation of frictional corrosion and the associated wear.

4. Transport the axial piston unit to the installation location.

5. Install the coupling on the drive shaft of the machine/system in accordance with the specifications provided by the coupling manufacturer. The axial piston unit may not be bolted down until the coupling has been correctly installed.

6. Fix the axial piston unit at the installation location.
7. Align the drive shaft of the axial piston unit and the drive shaft of the machine or system so that there is no angular deviation.

8. Make certain that no impermissible axial and radial forces act on the drive shaft.

9. Details on the required tools and tightening torques for the fixing screws are available from the machine/system manufacturer.

10. When using flexible couplings, check that the output drive is free of resonance after completing the installation.

7.4.5 Installation on a gearbox

The installation layout for the axial piston unit on a gearbox is described below.

After installing on a gearbox, the axial piston unit is covered and is difficult to access:

- Therefore, before installing, make sure that the centering spigot centers the axial piston unit (observe tolerances) and that no impermissible axial or radial forces act on the drive shaft of the axial piston unit (installation length).
- Protect the drive shaft against frictional corrosion by providing permanent lubrication.
- Fix the axial piston unit at the installation location.

For attachment via gear wheel or helically-toothed shaft

No gearing forces higher than the permissible axial and radial forces are to act on the shaft, if necessary the gear wheel must be supported separately at the gearbox output.

7.4.6 Installation with cardan shaft

To connect the axial piston unit to the engine via a cardan shaft:

1. Position the axial piston unit close to the specified installation location. It should allow enough space for the cardan shaft to fit through on both sides.

2. Position the cardan shaft on the output shaft of the engine.

3. Push the axial piston unit to the cardan shaft and join the cardan shaft to the drive shaft of the axial piston unit.

4. Bring the axial piston unit to the installation position and secure. Details on the required tools and breakaway torques for the fixing screws can be obtained from the system manufacturer if required.
7.4.7 Completing installation

1. Remove any mounted transport screws.

CAUTION! Operation with protective plug!

Operating the axial piston unit with protective plugs may result in injuries or damage to the axial piston unit.

- Before commissioning, remove all protective plugs and replace them with suitable, pressure-proof, metal threaded plugs.

2. Remove the transport protection.

The axial piston unit is delivered with protective covers (1) and protective plug (2). They are not pressure-resistant, therefore they have to be removed prior to connection. Use a suitable tool for this to prevent damage to the sealing and functional surfaces. If sealing or functional surfaces are damaged, contact your responsible Bosch Rexroth Service partner or the service department of the manufacture’s plant for the axial piston unit.

![Fig. 9: Removing transport protection](image)

1 Protective covers made of plastic (metallic protective covers are used for painted axial piston units)

2 Protective plug/threaded plug

Ports intended for connecting lines are covered by protective plugs or threaded plugs, which serve as transport protection. All ports required for functional operation must be connected (see table 12 “Ports A2FM/Series 6”). If this requirement is disregarded, malfunction or damage may result. If a port is not connected, it must be plugged with a threaded plug because protective plugs are not pressure-resistant.

The following information only applies to fixed motors with pressure-relief valve.

The adjusting screws are protected against unauthorized resetting by means of protective caps. Removal of the protective caps will void the warranty. If you need a modification of the setting, please contact your responsible Bosch Rexroth Service (address as to chapter “10.5 Spare parts”).

7.4.8 Hydraulically connecting the axial piston unit

The machine/system manufacturer is responsible for dimensioning the lines. The axial piston unit must be connected to the rest of the hydraulic system.
in accordance with the hydraulic circuit diagram of the machine/system manufacturer.

The ports and fixing threads are designed for the maximum pressure specified in the data sheet. The machine/system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

Connect only hydraulic lines that are appropriate for the axial piston unit port (pressure level, size, system of units).

Notes on routing the lines

- Lines and hoses must be installed without pre-charge pressure, so that no further mechanical forces are applied during operation that will reduce the service life of the axial piston unit and, if applicable, the entire machine/system.
- Use suitable seals as sealing material.
- Pressure line
 - For the pressure lines, use only pipes, hoses and connecting elements rated for the operating pressure range specified in data sheet RE 91001 (see table 12).
- Reservoir line
 - Always route the reservoir lines so that the case is constantly filled with hydraulic fluid and to ensure that no air gets through the shaft seal even during extended standstill periods.
 - The case internal pressure must not exceed the limit values listed for the axial piston unit in the data sheet under any operating conditions.
 - The reservoir line joint in the reservoir must always be below the minimum fluid level under all conditions (see chapter “7.3 Installation position”).

Risk of mix-ups with threaded connections

The axial piston units are used in application areas with metric as well as with the Anglo-American (inch) system of units.

Both the system of units as well as the size of threaded hole and threaded plug (e.g. locking screw) must match.

Due to the limited options for visually detecting differences, there is a risk of mix-ups.

WARNING! Leaking or popped-out threaded plugs!

If a threaded plug which is of a different measurement system and size with respect to the female thread is pressurized, the threaded plug may loosen itself or even be ejected from the hole in a projectile-like manner. This can result in serious injury and damage to equipment. Hydraulic fluid can be discharged from this leakage point.

- Use the drawings (installation drawing/data sheet) to determine the required threaded plug for each fitting.
- Make certain that there are no mix-ups when installing fittings, fixing screws and threaded plugs.
- For all female threads, use a threaded plug from the same system of units and of the correct size.
Connecting line to pressure-relief valve with pressure cut-in stage

Please note the following information concerning the version with port plate 192.

- When screwing in and tightening the connection line to port P_{St}, the nut (1) on the pressure-relief valve with pressure cut-in stage (2) must be braced with WAF 24. Observe the manufacturer’s instructions regarding tightening torques for the used connection line. The maximum permissible tightening torque at the threaded hole (40 Nm) must not be exceeded.

Fig. 10: Brace nut at pressure-relief valve

The adjustment of the pressure-relief valve must not be changed. Changing the setting of the adjusting screw on the pressure-relief valve will render the warranty void.
Fixing the counterbalance valve

Observe the following notes concerning the version with counterbalance valve (port plate 181).

When delivered, the counterbalance valve is attached to the motor using tacking screws (transport protection). The tacking screws must not be removed while fixing the service lines! If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be attached to the motor port plate using the provided tacking screws. The final fastening of the counterbalance valve on the motor is performed by bolting the SAE flange with the following screws:

- 6 screws (1, 2, 3, 4, 5, 8) length B1+B2+B3
- 2 screws (6, 7) length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see diagram below).

- In the first step, tighten the screws with half the tightening torque; in the second step, tighten with the maximum tightening torque (see table 10).

Table 10: Tightening torques of the fixing screws

<table>
<thead>
<tr>
<th>Thread</th>
<th>Strength class</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6 x 1 (tacking screw)</td>
<td>10.9</td>
<td>15.5 Nm</td>
</tr>
<tr>
<td>M10 x 1.5</td>
<td>10.9</td>
<td>75 Nm</td>
</tr>
<tr>
<td>M12 x 1.75</td>
<td>10.9</td>
<td>130 Nm</td>
</tr>
<tr>
<td>M14 x 2</td>
<td>10.9</td>
<td>205 Nm</td>
</tr>
</tbody>
</table>

![Fig. 11: Fixing the counterbalance valve](image)

The SAE flange and corresponding fixing screws are not included in the delivery contents.

Table 11: Threaded sizes and dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>28, 32, 45</th>
<th>56, 63</th>
<th>80, 90</th>
<th>107, 125, 160, 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension B1<sup>1)</sup></td>
<td>M10 x 1.5 deep</td>
<td>M10 x 1.5 deep</td>
<td>M12 x 1.75 deep</td>
<td>M14 x 2 deep</td>
</tr>
<tr>
<td>Dimension B2</td>
<td>78<sup>2)</sup> mm</td>
<td>68 mm</td>
<td>85 mm</td>
<td></td>
</tr>
<tr>
<td>Dimension B3</td>
<td>customer-specific (flange-dependent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimension B4</td>
<td>M10 x 1.5 deep</td>
<td>M10 x 1.5 deep</td>
<td>M12 x 1.75 deep</td>
<td>M14 x 2 deep</td>
</tr>
</tbody>
</table>

Fixing thread according to DIN 13. For DIN 13 fixing screws, we recommend checking the tightening torque on a case-by-case basis according to VDI 2230 Edition 2003.

¹ Minimum required thread reach 1 x Ø thread

² Including intermediate plate
Installation

Port overview

Fig. 12: Overview of ports A2FM, service line ports at rear

Fig. 13: Overview of ports A2FM, service line ports at side

Fig. 14: Overview of ports A2FM, service line ports at bottom

Fig. 15: Overview of ports A2FM with pressure relief valve, service line ports at bottom
Table 12: Ports A2FM Series 6

<table>
<thead>
<tr>
<th>Designation</th>
<th>Port for</th>
<th>Standard</th>
<th>Maximum pressure [bar]</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B (1)</td>
<td>Service line Fixing thread A/B</td>
<td>SAE J518 (3) DIN 13</td>
<td>450</td>
<td>O</td>
</tr>
<tr>
<td>A, B (4)</td>
<td>Service line</td>
<td>DIN 3852 (5)</td>
<td>450</td>
<td>O</td>
</tr>
<tr>
<td>T1</td>
<td>Reservoir line (case drain fluid)</td>
<td>DIN 3852 (5)</td>
<td>10</td>
<td>X (6)</td>
</tr>
<tr>
<td>T2</td>
<td>Reservoir line (case drain fluid)</td>
<td>DIN 3852 (5)</td>
<td>10</td>
<td>O (6)</td>
</tr>
<tr>
<td>MA</td>
<td>Measuring, pressure A</td>
<td>DIN 3852 (5)</td>
<td>450</td>
<td>X</td>
</tr>
<tr>
<td>MB</td>
<td>Measuring, pressure B</td>
<td>DIN 3852 (5)</td>
<td>450</td>
<td>X</td>
</tr>
<tr>
<td>S1</td>
<td>Supply (only with port plate 191/192)</td>
<td>DIN 3852 (5)</td>
<td>40</td>
<td>O</td>
</tr>
<tr>
<td>Pr</td>
<td>Control port (only with port plate 192)</td>
<td>DIN ISO 228 (5)</td>
<td>30</td>
<td>O</td>
</tr>
</tbody>
</table>

1) Short term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
2) Valid for sizes 23 to 1000 with SAE flange ports.
3) Only dimensions in accordance with SAE J518, metric fixing thread deviating from the standard.
4) Valid for sizes 5 to 32 with threaded ports.
5) The countersink may be deeper than specified in the standard.
6) Depending on installation position, either T1 or T2 must be connected (cf. chapter 7.3 “Installation position”)

O = Must be connected (plugged on delivery)
X = Plugged (in normal operation)

Tightening torques

The following tightening torques apply:

- Threaded hole of the axial piston unit:
 The maximum permissible tightening torques $M_{G\text{ max}}$ are maximum values of the threaded holes and must not be exceeded. For values, see the following table.

- Fittings:
 Observe the manufacturer’s instructions regarding the tightening torques of the fittings used.

- Fixing screws:
 For fixing screws with metric ISO thread according to DIN 13 or thread according to ASME B1.1, we recommend checking the tightening torque individually according to VDI 2230.

- Threaded plugs:
 For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_v apply. For values, refer to the following table.
Installation

Table 13: Tightening torques of the female threads and threaded plugs

<table>
<thead>
<tr>
<th>Ports Standard</th>
<th>Thread size</th>
<th>Maximum permissible tightening torque of the threaded holes $M_{g \ max}$</th>
<th>Required tightening torque of the threaded plugs M_v</th>
<th>WAF hexagon socket for the threaded plugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 3852</td>
<td>M10 x 1</td>
<td>30 Nm</td>
<td>12 Nm</td>
<td>5 mm</td>
</tr>
<tr>
<td></td>
<td>M12 x 1.5</td>
<td>50 Nm</td>
<td>25 Nm</td>
<td>6 mm</td>
</tr>
<tr>
<td></td>
<td>M14 x 1.5</td>
<td>80 Nm</td>
<td>35 Nm</td>
<td>6 mm</td>
</tr>
<tr>
<td></td>
<td>M16 x 1.5</td>
<td>100 Nm</td>
<td>50 Nm</td>
<td>8 mm</td>
</tr>
<tr>
<td></td>
<td>M18 x 1.5</td>
<td>140 Nm</td>
<td>60 Nm</td>
<td>8 mm</td>
</tr>
<tr>
<td></td>
<td>M22 x 1.5</td>
<td>210 Nm</td>
<td>80 Nm</td>
<td>10 mm</td>
</tr>
<tr>
<td></td>
<td>M26 x 1.5</td>
<td>230 Nm</td>
<td>120 Nm</td>
<td>12 mm</td>
</tr>
<tr>
<td></td>
<td>M27 x 2</td>
<td>330 Nm</td>
<td>135 Nm</td>
<td>12 mm</td>
</tr>
<tr>
<td></td>
<td>M33 x 2</td>
<td>540 Nm</td>
<td>225 Nm</td>
<td>17 mm</td>
</tr>
<tr>
<td></td>
<td>M42 x 2</td>
<td>720 Nm</td>
<td>360 Nm</td>
<td>22 mm</td>
</tr>
<tr>
<td>DIN ISO 228</td>
<td>G1/4(^1)</td>
<td>40 Nm</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

\(^1\) Connecting thread on pressure relief valve, see chapter 7.4.8 “Hydraulically connecting the axial piston unit”.

Procedure

To connect the axial piston unit to the hydraulic system:

1. Remove the threaded plugs at the ports at which the connections are to be made according to the hydraulic circuit diagram.
2. Make certain that the sealing surfaces of the hydraulic ports and functional surfaces are not damaged.
3. Use only clean hydraulic lines or flush them before installation. (Observe chapter 7.5 “Perform flushing cycle” when you flush the entire system.)
4. Connect the lines in accordance with the installation drawing and the machine or system circuit diagram. Check whether all ports are piped up or plugged with threaded plugs.
5. Correctly tighten the union nuts for the fittings and flanges (observe tightening torques!). Mark all correctly tightened fittings, e.g. with a permanent marker.
6. Check all pipes and hose lines and every combination of connecting pieces, couplings or connecting points with hoses or pipes to ensure they are in condition for safe working.

Relationship between direction of rotation and flow direction:
- Clockwise rotation: A to B
- Counter-clockwise rotation: B to A

7.5 Performing flushing cycle

In order to remove foreign particles from the system, Bosch Rexroth recommends a flushing cycle for the entire system. To avoid internal contamination, the axial piston unit must not be included in the flushing cycle.

The flushing cycle must be performed with an additional flushing unit. Follow the instructions of the flushing unit’s manufacturer for the exact procedure during the flushing cycle.
8 Commissioning

WARNING

Danger while working in the danger zone of a machine/system!

Danger to life, risk of injury or serious injuries!

- Pay attention to and rectify potential danger sources before operating the axial piston unit.
- Nobody may stand in the danger zone of the machine/system.
- The emergency stop button for the machine/system must be within the operator’s reach.
- Always follow the instructions of the machine/system manufacturer during commissioning.

CAUTION

Commissioning of an incorrectly installed product!

Risk of injury and damage to equipment!

You can injure yourself on incorrectly installed products or damage the product.

- Make sure that all electrical and hydraulic ports are connected or plugged.
- Only commission a completely installed product.

8.1 First commissioning

During all work for commissioning the axial piston unit, observe the general safety instructions and intended use in chapter 2 “Safety instructions”.

- Connect the gauge for the operating pressure and case pressure to the specified measuring points on the axial piston unit or in the hydraulic system, to check the technical data at first operation.
- During the commissioning process, monitor the temperature of the hydraulic fluid in the reservoir to ensure that it lies within the permissible viscosity limits.

8.1.1 Filling the axial piston unit

Professional filling and air bleeding is necessary to prevent damage to the axial piston unit and to maintain correct function.

The axial piston unit should be filled with a filling unit (10 µm filter grade). The axial piston unit must not be operated while it is being filled by the filling unit.

Use only a hydraulic fluid that conforms to the following requirements:

You can find details of the minimum requirements on hydraulic fluids in Bosch Rexroth data sheets RE 90220, RE 90221 and RE 90223. You can find the title of the data sheets in table 1 “Required and supplementary documentation”. You can find details of permissible and optimal viscosity in data sheet RE 91001.

To ensure the functional reliability of the axial piston unit, cleanliness level 20/18/15 according to at least ISO 4406 is necessary for the hydraulic fluid. At very high hydraulic fluid temperatures (+90 °C to maximum +115 °C), cleanliness level 19/17/14 according to at least ISO 4406 is necessary. For permissible temperatures, see data sheet RE 91001.
Commissioning

1. Place a drip tray under the axial piston unit to collect any hydraulic fluid that may escape.

NOTE! Contaminated hydraulic fluid!
The cleanliness levels of hydraulic fluids on delivery do not normally conform to the requirements for our components.
- Use a suitable filter system to filter hydraulic fluids during filling to minimize solid impurities and water in the hydraulic system.

2. Fill and air bleed the axial piston unit via the appropriate ports, see chapter “7.3 Installation position”. The hydraulic lines of the system must also be filled.

NOTE! Damage to equipment due to improper lubrication!
Product can be damaged or destroyed!
- When using a shut-off valve in the reservoir line, makes sure that the input of the axial piston unit can only be started when the shut-off valves are open.

3. When using a shut-off valve in the reservoir line, only operate the axial piston unit when the shut-off valves are open.

8.1.2 Testing the hydraulic fluid supply

The axial piston unit must always have a sufficient supply of hydraulic fluid. For this reason, the supply of hydraulic fluid must be ensured at the start of the commissioning process.

When you test the hydraulic fluid supply, constantly monitor the noise development and check the hydraulic fluid level in the reservoir. If the axial piston unit becomes louder (cavitation) or the case drain fluid is discharged with bubbles, this is an indication that the axial piston unit is not being sufficiently supplied with hydraulic fluid.

Notes on troubleshooting can be found in chapter “14 Troubleshooting”.

To test the hydraulic fluid supply:

1. Allow the axial piston unit to run at low speed and without load. Pay attention to leakage and noise.

2. Check the axial piston unit’s reservoir line during the test. The case drain fluid should not contain any bubbles.

3. Increase the load and check whether the operating pressure rises as expected.

4. Carry out a leak test to ensure that the hydraulic system is sealed and can withstand the maximum pressure.

5. At maximum pressure, check the case drain pressure at port T_1 or T_2. Refer to data sheet RE 91001 for the permissible value.
8.1.3 Performing functional test

WARNING

Incorrectly connected axial piston unit!
Mixing up the ports will lead to malfunctions (e.g. lift instead of lower) and thus to corresponding danger to persons and equipment!
- Before the functional test, check whether the piping specified in the hydraulic circuit diagram has been installed.

Once you have tested the hydraulic fluid supply, you must perform a functional test on the machine/system. The functional test should be performed according to the instructions of the machine/system manufacturer.

The axial piston unit is checked for functional capability before delivery according to the technical data. During commissioning, it must be ensured that the axial piston unit was installed properly in the machine/system.
- After starting the engine, check in particular the specified pressures, e.g. system pressure, boost pressure and case pressure.
- If necessary, disconnect the gauge and plug the ports with threaded plugs.

8.2 Running-in phase

NOTE

Damage to equipment by insufficient viscosity!
An increased hydraulic fluid temperature may reduce the viscosity values by too much and damage the product!
- Monitor the operating temperature during the running-in phase, e.g. by measuring the case drain temperature.
- Reduce the loading (pressure, rpm) of the axial piston unit if impermissible operating temperatures and/or viscosities occur.
- Operating temperatures that are too high indicate faults that have to be analyzed and cleared.

The bearings and sliding surfaces are subject to a running-in phase. The increased friction at the start of the running-in phase results in increased heat development which decreases with increasing operating hours. The volumetric and mechanical-hydraulic efficiency increases as well through the conclusion of the running-in phase of approx. 10 operating hours.

To ensure that contamination in the hydraulic system does not damage the axial piston unit, Bosch Rexroth recommends the following procedure after the running-in phase:
- After the running-in phase, have a hydraulic fluid specimen analyzed for the required cleanliness level.
- Change the hydraulic fluid if the required cleanliness level is not reached.
 If a laboratory test is not carried out after the running-in phase, Bosch Rexroth recommends the hydraulic fluid be changed.
8.3 **Recommissioning after standstill**

Depending on the installation conditions and ambient conditions, changes may occur in the hydraulic system which make recommissioning necessary. Among others, the following criteria may make recommissioning necessary:

- Air and/or water in the hydraulic system
- Old hydraulic fluid
- Other contamination

> Before recommissioning, proceed as described in chapter 8.1 “First commissioning”.
9 Operation

The product is a component which requires no settings or changes during operation. For this reason, this chapter of the manual does not contain any information on adjustment options. Use the product only within the performance range provided in the technical data. The machine/system manufacturer is responsible for the proper project planning of the hydraulic system and its control.
10 Maintenance and repair

NOTE

Inspection and maintenance work carried out too late!
Damage to equipment!
- Carry out the specified inspection and maintenance work at the intervals described in this manual.

10.1 Cleaning and care

NOTE

Damage to seals and electrical system by mechanical effects!
The water jet of a power washer may damage the seals and electrical system of the axial piston unit!
- Do not point the power washer at sensitive components, e.g. shaft seal, electrical connections and components.

For cleaning and care of the axial piston unit, observe the following:
- Check whether all seals and fittings on the connections are securely seated to ensure that no moisture can penetrate into the axial piston unit during cleaning.
- Use only water and, if necessary, a mild detergent to clean the axial piston unit. Never use solvents or aggressive detergents.
- Remove external coarse dirt and keep sensitive and important components, such as solenoids, valves, displays and sensors, clean.
10.2 Inspection

In order to enable long and reliable operation of the axial piston unit, Bosch Rexroth recommends testing the hydraulic system and axial piston unit on a regular basis, and documenting and archiving the following operating conditions:

Table 14: Inspection schedule

<table>
<thead>
<tr>
<th>Task to be carried out</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check level of hydraulic fluid in the reservoir.</td>
<td>Daily</td>
</tr>
<tr>
<td>Check the operating temperature at a comparable load condition at the reservoir port and in the reservoir.</td>
<td>Weekly</td>
</tr>
<tr>
<td>Conduct analysis of hydraulic fluid: viscosity, aging and dirt contamination</td>
<td>Yearly or every 2000 operating hours (whichever occurs first)</td>
</tr>
<tr>
<td>Check axial piston unit for leakage. Early detection of hydraulic fluid loss can help to find errors on the machine/system and to rectify them. For this reason, Bosch Rexroth recommends that the axial piston unit and system are always kept in a clean condition.</td>
<td>Daily</td>
</tr>
<tr>
<td>Check axial piston unit for unusual noise development.</td>
<td>Daily</td>
</tr>
<tr>
<td>Check fasteners for tight seating. All fasteners have to be checked when the hydraulic system is switched off, depressurized and cooled down.</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

10.3 Maintenance

The axial piston unit is low maintenance when used properly.

The service life of the axial piston unit is heavily dependent on the quality of the hydraulic fluid. For this reason, we recommend changing the hydraulic fluid at least once per year or every 2000 operating hours (which ever occurs first) or having it analyzed by the hydraulic fluid manufacturer or a laboratory to determine its suitability for further use.

The service life of the axial piston unit is limited by the service life of the bearings fitted. The service life based on the load cycle can be requested from the responsible Bosch Rexroth Service partner. see chapter 10.5 “Spare parts” for address. Based on these details, a maintenance period is to be determined by the system manufacturer for the replacement of the bearings and included in the maintenance schedule of the hydraulic system.

10.4 Repair

Bosch Rexroth offers a comprehensive range of services for the repair of Rexroth axial piston units.

Repairs on the axial piston unit may only be performed by service centers certified by Bosch Rexroth.

- Use exclusively original spare parts from Rexroth to repair the Rexroth axial piston units, otherwise the functional reliability of the axial piston unit can not be assured and you lose your entitlement under warranty.

In the event of questions regarding repair, contact your responsible Bosch Rexroth Service partner or the service department of the manufacturer’s plant for the axial piston unit, see chapter “10.5 Spare parts” for further information.
10.5 Spare parts

CAUTION

Use of unsuitable spare parts!
Spare parts that do not meet the technical requirements specified by Bosch Rexroth may cause personal injury or property damage!

- Use exclusively original spare parts from Rexroth to repair the Rexroth axial piston units, otherwise the functional reliability of the axial piston unit cannot be assured and you lose your entitlement under warranty.

The spare parts lists for axial piston units are order specific. When ordering spare parts, quote the material and serial number of the axial piston unit as well as the material numbers of the spare parts.

Address all questions regarding spare parts to your responsible Bosch Rexroth Service partner or the service department of the manufacture's plant for the axial piston unit.

Details on the manufacture's plant are available on the axial piston unit's name plate.

Bosch Rexroth AG
Glockeraustraße 4
D-89275 Elchingen, Germany
Tel. +49-7308-82-0
Fax +49-711-811-513-9382
svm.support@boschrexroth.de

Bosch Rexroth AG
An den Kelterwiesen 14
72160 Horb a.N., Germany
Tel. +49-7451-92-0
Fax +49-711-811-513-9382
svm.support@boschrexroth.de

For the addresses of foreign subsidiaries, please refer to www.boschrexroth.com/addresses
11 Removal and replacement

11.1 Required tools
Removal can be performed using standard tools. No special tools are necessary.

11.2 Preparing for removal
1. Decommission the entire system as described in the instruction manual for the machine or system.
 - Relieve pressure in the hydraulic system according to the instructions of the machine or system manufacturer.
 - Make certain that the relevant system components are not under pressure or voltage.
2. Protect the complete system against being energized.

11.3 Removing the axial piston unit
Proceed as follows to remove the axial piston unit:
1. Check whether the hydraulic system is depressurized.
2. Allow the axial piston unit to cool down until it can be removed without danger.
3. For below-reservoir installation, before removing the axial piston unit from the complete system, seal the connection to the reservoir or drain the reservoir.
4. Place a drip tray under the axial piston unit to collect any hydraulic fluid that may escape.
5. Loosen the lines and collect the escaping hydraulic fluid in the drip tray.
6. Remove the axial piston unit. Use a suitable lifting device.
7. Completely empty the axial piston unit.
8. Plug all openings.

11.4 Preparing the components for storage or further use
- Proceed as described in chapter “6.2 Storing the axial piston unit”.
12 Disposal

Careless disposal of the axial piston unit, the hydraulic fluid and the packaging material could lead to pollution of the environment.

Observe the following points when disposing of the axial piston unit:

1. Completely empty the axial piston unit.
2. Dispose of the axial piston unit and packaging material in accordance with the national regulations in your country.
3. Dispose of the hydraulic fluid according to the national regulations of your country. Also observe the applicable safety data sheet for the hydraulic fluid.
4. Remove the axial piston unit into its individual parts and properly recycle these parts.
5. Separate according to, for instance:
 - Cast parts
 - Steel
 - Aluminum
 - Non-ferrous metal
 - Electronic waste
 - Plastic
 - Seals

13 Extension and conversion

Do not modify the axial piston unit.

The Bosch Rexroth warranty only applies for the delivered configuration. In case of conversion or extension, the entitlement under warranty will be rendered void.
14 Troubleshooting

The following table may assist you in troubleshooting. The table makes no claim for completeness.

In practical use, problems which are not listed here may also occur.

14.1 How to proceed for troubleshooting

- Always act systematically and targeted, even under pressure of time. Random and imprudent removal and a readjustment of settings could result in the inability to ascertain the original failure cause.
- First obtain a general overview of how your product works in conjunction with the entire system.
- Try to determine whether the product worked properly in conjunction with the entire system before the error occurred.
- Try to determine any changes of the entire system in which the product is integrated
 - Were there any changes to the product's application conditions or operating range?
 - Has maintenance work recently been carried out? Is there an inspection or maintenance log?
 - Were changes (e.g. conversions) or repairs made to the complete system (machine/system, electrics, control) or on the product? If yes, which?
 - Has the hydraulic fluid been changed?
 - Was the product or machine operated as intended?
 - How did the malfunction appear?
- Try to get a clear idea of the error cause. Directly ask the (machine) operator.
- Document the work carried out.
- If you cannot rectify the error, contact one of the contact addresses which can be found under: www.boschrexroth.com/addresses.
Troubleshooting

14.2 Malfunction table

Table 15: Axial piston unit malfunction table

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Improper fixing of the axial piston unit.</td>
<td>Check the fixing of the axial piston unit according to the specifications of the machine/system manufacturer. Observe tightening torques.</td>
</tr>
<tr>
<td></td>
<td>Improper fixing of the attachment parts, e.g. coupling and hydraulic lines.</td>
<td>Fix attachment parts according to the information provided by the coupling or fitting manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Mechanical damage to the axial piston unit (e.g. bearing damage).</td>
<td>Exchange axial piston unit, contact Bosch Rexroth Service.</td>
</tr>
<tr>
<td>Pressure/flow fluctuations</td>
<td>Axial piston unit not or insufficiently air bled.</td>
<td>Completely air bleed axial piston unit.</td>
</tr>
<tr>
<td>Operational data not achieved</td>
<td>Insufficient flow at hydraulic pump.</td>
<td>Check function of the hydraulic pump.</td>
</tr>
<tr>
<td></td>
<td>Hydraulic fluid not in optimum viscosity range.</td>
<td>Use suitable hydraulic fluid (machine/system manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Wear of axial piston unit.</td>
<td>Exchange axial piston unit, contact Bosch Rexroth Service.</td>
</tr>
<tr>
<td></td>
<td>Mechanical damage to the axial piston unit (e.g. bearing damage).</td>
<td>Exchange axial piston unit, contact Bosch Rexroth Service.</td>
</tr>
<tr>
<td>Excessive hydraulic fluid temperature and case temperature</td>
<td>Excessive inlet temperature at the axial piston unit.</td>
<td>Machine or system manufacturer: inspect system, e.g malfunction of the cooler, insufficient hydraulic fluid in the tank.</td>
</tr>
<tr>
<td></td>
<td>Malfunction of the pressure control valves (e.g. high-pressure relief valve, pressure cut-off, pressure controller).</td>
<td>Contact Bosch Rexroth Service.</td>
</tr>
<tr>
<td></td>
<td>Malfunction of the flushing valve.</td>
<td>Contact Bosch Rexroth Service.</td>
</tr>
<tr>
<td></td>
<td>Wear of axial piston unit.</td>
<td>Exchange axial piston unit, contact Bosch Rexroth Service.</td>
</tr>
<tr>
<td></td>
<td>Resonance in the reservoir line.</td>
<td>Machine/system manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Malfunction of the control devices or the controller.</td>
<td>Contact Bosch Rexroth Service.</td>
</tr>
</tbody>
</table>
15 Technical data

The permissible values of the technical data of your axial piston unit can be found in data sheet RE 91001. The data sheet can be found on the internet at www.boschrexroth.com/axial-piston-motors

The order-related technical data of your axial piston unit can be found in the order confirmation.

16 Appendix

16.1 Address directory

For the addresses of foreign subsidiaries, please refer to www.boschrexroth.com/addresses
17 Alphabetical index

A
Abbreviations 7
Address directory 47
Assembly 15

B
Below-reservoir installation 23

C
Care 40
Circuit
 closed 15
 open 15
Cleaning 40
Commissioning 35
 First 35
Connecting
 Hydraulic 28
Conversion 44
Corrosion protection 19
Corrosion protection film 19
Cylinder 15

D
Damage to equipment 12
Delivery contents 14
Designations 7
Dimensions 17, 25
Direction of rotation 25
Disposal 44
Drive shaft 15

F
Filling 35
Flushing cycle 34
Functional description
 Motor function 16
Functional test 37

I
Identification 16
Inspection 41
Installation 21, 25
 Completing 28
 General instructions 25
 On a gearbox 27
 Preparation 25
 With coupling 26
Installation conditions 21
Installation Position
 Below-reservoir installation 23
Instructions
 General 25
Intended use 8

L
Lifting device 17
Lifting strap 18

M
Maintenance 40, 41
Malfunction table 46

N
Name plate 16

O
Operation 39

P
Performance description 15
Piston 15
Port overview 32
Port plate 15
Product description 15

Q
Qualifications 9

R
Recommissioning 38
 After standstill 38
Removal 43
 Performing 43
 Preparing 43
Repair 41
Replacement 43
Required documentation 5
Ring screw 17
Running-in phase 37

S
Safety instructions 8
 General 9
 Product-specific 10
Signal word 6
Spare parts 42
Storage 17
Storage time 19
Storing 19
Symbols 7
Alphabetical index

T
- Technical data 47
- Tightening torques 33
- Tools 43
- Transport 17
 - With lifting strap 18
 - With ring screw 17
- Transporting 17
- Transport protection 28
- Troubleshooting 45

U
- Unpacking 21

W
- Warranty 19, 35, 44
- Warranty rights 28
- Weights 17
Bosch Rexroth AG
Axial piston units
Glockeraustrasse 4
89275 Etchingen
Germany
Tel. +49-7308-82-0
Fax +49-7308-72-74
info.brm-ak@boschrexroth.de
www.boschrexroth.com/axial-piston-motors

Subject to change
Printed in Germany
RE 91001-01-B/08.2011