Materiales

1. Panal o intercambiador. Fabricado con tubos de cobre y aletas de aluminio. La soldadura está realizada en plátex y las tuercas de fijación de los latiguillos son de latón, para que así no se queden cogidos los racores entre sí.
2. Ventilador. Son movidos por el motor, dependiendo del voltaje de los mismos, están hechos de aluminio de forma que produzcan poca resistencia al motor y con unas inclinaciones de pala adecuadas a cada modelo, con el fin de sacar más caudal de aire. Siempre será de modo aspirante, ya que de esa forma absorbe aire de toda la cara exterior, aprovechando todo el panal o intercambiador sacando el máximo rendimiento del mismo. En el caso de ser soplante canalizará el aire, con lo que perderemos zonas de intercambio.

3. Termostato. Todos los intercambiadores líquido-aire van provistos de un termostato conectado a la entrada del líquido que va de una escala de $0^{\circ} \mathrm{C}$ a $120^{\circ} \mathrm{C}$ que es el que se encarga a la temperatura deseadas, accionar el ventilador, originando con ello que sólo se conecte cuando el aceite alcance la temperatura programada por nosotros, de esta forma también originamos un consiguiente ahorro energético.
alimentació
de salpicaduras de líquidos, suciedades o contactos.
4. Cuerpo o envolvente. El panal o intercambiador y el ventilador van protegidos por un envolvente o caja de acero galvanizado y pintado en epoxi, protegiéndola de oxidaciones.
5. Rejillas. Poseen dos rejillas, una delantera protegiendo el panal o intercambiador de algun golpe para no doblar las aletas o romper ningún tubo, y otra trasera, impidiendo que se pueda introducir objetos en las aspas del ventilador, provocando averías o lesiones al manipular en sus proximidades. El único problema de ensuciamiento lo sufrirán las aletas, que con el tiempo se van depositando impurezas entre ellas, llegando a obstruirlas, con lo que para su limpieza se recomienda hacerlo soplando el intercambiador con una pistola neumática, de forma que la presión de aire desincruste esas partículas. También se puede limpiar con agua a presión, evitando no echar agua directamente a la caja de conexiones y procurando que el intercambiador esté desconectado de la red.
Tras esta operación, soplarlo bien con aire para evitar el exceso de agua depositado entre las aletas.

Calculo

e
n las curvas elegimos un caudal que vamos a aplicar el más adecuado en cada caso, y trazamos una vertical hasta hacerla cruzar con la curva en el punto, nos dará un punto que multiplicado por la ΔT entre la temperatura del aceite con la temperatura ambiente obtenemos unos Kw que son los que disipará el intercambiador en cada caso.

Ejemplo: tenemos un caudal de 80 1./min, desde ese punto trazamos una línea imaginaria vertical, la cual se cruza en un punto de una curva, en este caso 0,20.
Ese 0,20 se multiplica por la ΔT y nos da unos Kw que son los que se disipa. Ejem. Temperatura ambiente $30^{\circ} \mathrm{C}$, temperatura de entrada del aceite $60^{\circ} \mathrm{C}$.
$\Delta \mathrm{T}=30^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}=30^{\circ} \mathrm{C}$
$0,20 \times 30=6 \mathrm{Kw}$ de Disipación

En caso de cualquier duda sobre los cálculos no duden en contactar con nuestro departamento técnico que le asesorará en sus necesidades.

